3.1669 \(\int \frac {1}{(a+b x)^{3/2} (c+d x)^{7/4}} \, dx\)

Optimal. Leaf size=146 \[ -\frac {10 b^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} \operatorname {EllipticF}\left (\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right ),-1\right )}{3 \sqrt {a+b x} (b c-a d)^{7/4}}-\frac {10 d \sqrt {a+b x}}{3 (c+d x)^{3/4} (b c-a d)^2}-\frac {2}{\sqrt {a+b x} (c+d x)^{3/4} (b c-a d)} \]

[Out]

-2/(-a*d+b*c)/(d*x+c)^(3/4)/(b*x+a)^(1/2)-10/3*d*(b*x+a)^(1/2)/(-a*d+b*c)^2/(d*x+c)^(3/4)-10/3*b^(3/4)*Ellipti
cF(b^(1/4)*(d*x+c)^(1/4)/(-a*d+b*c)^(1/4),I)*(-d*(b*x+a)/(-a*d+b*c))^(1/2)/(-a*d+b*c)^(7/4)/(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {51, 63, 224, 221} \[ -\frac {10 b^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{3 \sqrt {a+b x} (b c-a d)^{7/4}}-\frac {10 d \sqrt {a+b x}}{3 (c+d x)^{3/4} (b c-a d)^2}-\frac {2}{\sqrt {a+b x} (c+d x)^{3/4} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)^(3/2)*(c + d*x)^(7/4)),x]

[Out]

-2/((b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(3/4)) - (10*d*Sqrt[a + b*x])/(3*(b*c - a*d)^2*(c + d*x)^(3/4)) - (10*
b^(3/4)*Sqrt[-((d*(a + b*x))/(b*c - a*d))]*EllipticF[ArcSin[(b^(1/4)*(c + d*x)^(1/4))/(b*c - a*d)^(1/4)], -1])
/(3*(b*c - a*d)^(7/4)*Sqrt[a + b*x])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+b x)^{3/2} (c+d x)^{7/4}} \, dx &=-\frac {2}{(b c-a d) \sqrt {a+b x} (c+d x)^{3/4}}-\frac {(5 d) \int \frac {1}{\sqrt {a+b x} (c+d x)^{7/4}} \, dx}{2 (b c-a d)}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} (c+d x)^{3/4}}-\frac {10 d \sqrt {a+b x}}{3 (b c-a d)^2 (c+d x)^{3/4}}-\frac {(5 b d) \int \frac {1}{\sqrt {a+b x} (c+d x)^{3/4}} \, dx}{6 (b c-a d)^2}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} (c+d x)^{3/4}}-\frac {10 d \sqrt {a+b x}}{3 (b c-a d)^2 (c+d x)^{3/4}}-\frac {(10 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-\frac {b c}{d}+\frac {b x^4}{d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{3 (b c-a d)^2}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} (c+d x)^{3/4}}-\frac {10 d \sqrt {a+b x}}{3 (b c-a d)^2 (c+d x)^{3/4}}-\frac {\left (10 b \sqrt {\frac {d (a+b x)}{-b c+a d}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {b x^4}{\left (a-\frac {b c}{d}\right ) d}}} \, dx,x,\sqrt [4]{c+d x}\right )}{3 (b c-a d)^2 \sqrt {a+b x}}\\ &=-\frac {2}{(b c-a d) \sqrt {a+b x} (c+d x)^{3/4}}-\frac {10 d \sqrt {a+b x}}{3 (b c-a d)^2 (c+d x)^{3/4}}-\frac {10 b^{3/4} \sqrt {-\frac {d (a+b x)}{b c-a d}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{b} \sqrt [4]{c+d x}}{\sqrt [4]{b c-a d}}\right )\right |-1\right )}{3 (b c-a d)^{7/4} \sqrt {a+b x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 71, normalized size = 0.49 \[ -\frac {2 \left (\frac {b (c+d x)}{b c-a d}\right )^{7/4} \, _2F_1\left (-\frac {1}{2},\frac {7}{4};\frac {1}{2};\frac {d (a+b x)}{a d-b c}\right )}{b \sqrt {a+b x} (c+d x)^{7/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)^(3/2)*(c + d*x)^(7/4)),x]

[Out]

(-2*((b*(c + d*x))/(b*c - a*d))^(7/4)*Hypergeometric2F1[-1/2, 7/4, 1/2, (d*(a + b*x))/(-(b*c) + a*d)])/(b*Sqrt
[a + b*x]*(c + d*x)^(7/4))

________________________________________________________________________________________

fricas [F]  time = 0.48, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x + a} {\left (d x + c\right )}^{\frac {1}{4}}}{b^{2} d^{2} x^{4} + a^{2} c^{2} + 2 \, {\left (b^{2} c d + a b d^{2}\right )} x^{3} + {\left (b^{2} c^{2} + 4 \, a b c d + a^{2} d^{2}\right )} x^{2} + 2 \, {\left (a b c^{2} + a^{2} c d\right )} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(7/4),x, algorithm="fricas")

[Out]

integral(sqrt(b*x + a)*(d*x + c)^(1/4)/(b^2*d^2*x^4 + a^2*c^2 + 2*(b^2*c*d + a*b*d^2)*x^3 + (b^2*c^2 + 4*a*b*c
*d + a^2*d^2)*x^2 + 2*(a*b*c^2 + a^2*c*d)*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x + a\right )}^{\frac {3}{2}} {\left (d x + c\right )}^{\frac {7}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(7/4),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(7/4)), x)

________________________________________________________________________________________

maple [F]  time = 0.08, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (b x +a \right )^{\frac {3}{2}} \left (d x +c \right )^{\frac {7}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)^(3/2)/(d*x+c)^(7/4),x)

[Out]

int(1/(b*x+a)^(3/2)/(d*x+c)^(7/4),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x + a\right )}^{\frac {3}{2}} {\left (d x + c\right )}^{\frac {7}{4}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)^(3/2)/(d*x+c)^(7/4),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)^(3/2)*(d*x + c)^(7/4)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a+b\,x\right )}^{3/2}\,{\left (c+d\,x\right )}^{7/4}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)^(3/2)*(c + d*x)^(7/4)),x)

[Out]

int(1/((a + b*x)^(3/2)*(c + d*x)^(7/4)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b x\right )^{\frac {3}{2}} \left (c + d x\right )^{\frac {7}{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)**(3/2)/(d*x+c)**(7/4),x)

[Out]

Integral(1/((a + b*x)**(3/2)*(c + d*x)**(7/4)), x)

________________________________________________________________________________________